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Figure 1. We propose to learn a neural parametric head model based on neural fields: first, we capture a large dataset of over 5200 high-
fidelity head scans with varying shapes and expressions (left). We then non-rigidly register these scans to generate our training data. As
a result of training, we obtain a disentangled latent that spans the space of shapes zid and expressions zex (middle). At inference time, we
can leverage the prior of our learned representation by fitting our model to a sparse input point cloud by solving for the latent codes (right).

Abstract

We propose a novel 3D morphable model for complete
human heads based on hybrid neural fields. At the core of
our model lies a neural parametric representation that dis-
entangles identity and expressions in disjoint latent spaces.
To this end, we capture a person’s identity in a canonical
space as a signed distance field (SDF), and model facial ex-
pressions with a neural deformation field. In addition, our
representation achieves high-fidelity local detail by intro-
ducing an ensemble of local fields centered around facial
anchor points. To facilitate generalization, we train our
model on a newly-captured dataset of over 5200 head scans
from 255 different identities using a custom high-end 3D
scanning setup. Our dataset significantly exceeds compara-
ble existing datasets, both with respect to quality and com-
pleteness of geometry, averaging around 3.5M mesh faces
per scan. Finally, we demonstrate that our approach out-
performs state-of-the-art methods in terms of fitting error
and reconstruction quality.

Website: https://simongiebenhain.github.io/NPHM

1. Introduction

Human faces and heads lie at the core of human visual
perception, and hence are key to creating digital replica of
someones identity, likeliness, and appearance. In particular,
3D reconstruction of human heads from sparse inputs, such
as point clouds, is central to a wide range of applications
in the context of gaming, augmented and virtual reality, and
digitization in our modern digital era. One of the most suc-
cessful lines of research to address this challenging prob-
lem are parametric face models, which represent both shape
identities and expressions featuring a low-dimensional para-
metric space. These Blendshape and 3D morphable models
(3DMMs) have achieved incredible success, since they can
be fitted to sparse inputs, regularize out noise, and provide
a compact 3D representation. As a result, many practical
settings could be realized, ranging from face tracking and
3D avatar creation to facial-reenactment applications [52].

Traditionally, 3DMMs, are based on a low-rank approx-
imation of the underlying 3D mesh geometry. To this end,
a template mesh with fixed topology is non-rigidly regis-
tered to a series of 3D scans. From this template regis-
tration, a 3DMM can be computed using dimensionality
reduction methods such as principal component analysis
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(PCA). The quality of the resulting parametric space de-
pends strongly on the quality of 3D scans, their registra-
tion, and the ability to disentangle identity and expression
variations. While these PCA-based models exhibit excel-
lent regularizing properties, their inherent limitation lies in
their inability to represent local surface detail and the re-
liance on a template mesh of fixed topology, which inhibits
the representation of diverse hair styles.

In this work, we propose neural parametric head models
(NPHM), which represent complete human head geometry
in a canonical space using an SDF, and morph the resulting
geometry to posed space using a forward deformation field.
By decoupling the human head representation into these
two spaces, we are able to learn disentangled latent spaces
– one of the core concepts of 3DMMs. Furthermore, we
decompose the implicit geometry representation in canon-
ical space into an ensemble of local MLPs. Each part is
represented by a small MLP that operates in a local coordi-
nate system centered around face keypoints. Additionally,
we exploit face symmetry by sharing network weights of
symmetric regions. This decomposition into separate parts
imposes a strong geometry prior and helps to improve both
generalization and provide higher levels of detail.

In order to train our model, we capture a new high-
fidelity head dataset with a high-end capture rig, which is
composed of over 5200 3D head scans from 255 different
people. After rigidly aligning all scans in a canonical co-
ordinate system, we train our identity network on scans in
canonical expression. In order to train the deformation net-
work, we non-rigidly register each scan against a template
mesh, which we in turn use as training data for our neural
deformation model. At inference time, we can then fit our
model to a given input point cloud by optimizing for the la-
tent code parameters for both expression and identity. In a
series of experiments, we demonstrate that our neural para-
metric model outperforms state-of-the-art models and can
represent complete heads, including fine details.
In sum, our contributions are as follows:

• We introduce a novel 3D dataset captured with a high-
end capture rig, including over 5200 3D scans of hu-
man heads from 255 different identities.

• We propose a new neural-field-based parametric head
representation, which facilitates high-fidelity local de-
tails through an ensemble of local implicit models.

• We demonstrate that our neural parametric head model
can be robustly fit to range data, regularize out noise,
and outperform existing models.

2. Related Work
3D morphable face and head models. The seminal work
of Blanz and Vetter [2] was one of the first to introduce
a model-based approach to represent variations in human

faces using PCA. Since the scans were captured in con-
strained environments, the expressiveness of the model was
relatively limited. As such, improvements in the regis-
tration [32], as well as the use of data captured in the
wild [4,5,34], led to significant advances. Thereafter, more
advanced face models were introduced, including multilin-
ear models of identity and expression [3,7], as well as mod-
els that combined linear shape spaces with articulated head
parts [21], and localized approaches [26].

With the advent of deep learning, various works focused
on extending face and head 3DMMs beyond linear spaces.
To this end, convolutional neural network based architec-
tures have been proposed to both regress the model parame-
ters and reconstruct the face [19,40–42,45,46]. At the same
time, graph convolutions [6, 15] and attention modules [12]
have been proposed to model the head mesh geometry.
Neural field representations. Neural field-based networks
have emerged as an efficient way to implicitly represent 3D
scenes. In contrast to explicit representations (e.g., meshes
or voxel grids), neural fields are well-suited to represent ge-
ometries of arbitrary topology. Park et al. [29] proposed to
represent a class-specific SDF with an MLP that is condi-
tioned on a latent variable. Similarly, Mescheder et al. [24]
implicitly define a surface as the decision boundary of a bi-
nary classifier and Mildenhall et al. [25] represent a radi-
ance field using an MLP by supervising a photometric loss
on the rendered images.

Building upon these approaches, a series of works focus
on modeling deformations. These methods use a separate
network to model the deformations that occur in a sequence
(e.g., [30, 31]), and have been successfully applied to ani-
mation of human bodies [20,22] and heads [49]. Following
this paradigm, a number of neural parametric models have
been proposed for bodies [10, 27, 28], faces [48], and —
most closely related to our work— heads [35, 44, 47]. For
instance, H3D-Net [35] and MoRF [44] proposed 3D gen-
erative models of heads, but do not account for expression-
specific deformations. Recently, neural parametric models
for human faces [47, 48] and bodies [10, 11, 27, 28] have
explored combinations of SDFs and deformation fields, to
produce complex non-linear deformations, while maintain-
ing the flexibility of an implicit geometry representation.
Our work is greatly inspired by these lines of research; how-
ever, the key difference is that we tailor our neural field
representation specifically to human heads through an en-
semble of local MLPs. Thereby, our work is also related
to local conditioning methods for neural fields of arbitrary
objects [9,13,14,33], human bodies [28,51] and faces [48].
Compared to ImFace [48], our model utilizes a larger num-
ber of fine-grained local representations and incorporates a
symmetry prior to represent the complete head. Addition-
ally, we propose to models forward instead of backward de-
formations, which allows for faster animation.
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Figure 2. 3D head scans from our newly-captured dataset: for each person (rows), we first capture a neutral pose, followed by several scans
in different expressions (columns). Overall, our dataset has more than 5200 3D scans from 255 people.

3. Dataset Acquisition
Our dataset comprises 255 subjects, 29% female, and

contains over 5200 3D scans; see Table. 1. Our 3D head
scans show great level of detail and completeness, as shown
in Fig. 2. Additionally, we do not require participants to
wear a bathing cap as in the FaceScape dataset [46], allow-
ing for the capture of natural hair styles to a certain degree.
See Fig. 3 for a visual comparison of our novel dataset to
other 3D face datasets.

Num. Subjects 255 (188m/67f)
Total num. Scans 5200
Num. Vertices/Scan ≈ 1.5M

Table 1. Statistics of our 3D scanning dataset.

3.1. Capture Setup

Our setup is composed of two Artec Eva scanners [38],
that are rotated 360° around a subject’s head using a robotic
actuator. Each scan takes only 6 seconds, which is crucial
to keep involuntary, non-rigid facial movements to a min-
imum. The scanners operate at 16 FPS, and are aligned
through the scanning sequence and fused into a single mesh;
each fused scan contains approximately 1.5M vertices and
3.5M triangles. Each participant is asked to perform 23 dif-
ferent expressions, which are adopted from the FACS coded
expression proposed in FaceWarehouse [8], see our sup-
plemntal for details. Importantly, we capture a neutral ex-
pression with the mouth open, which later serves as canon-
ical expression, as described in Section 4.

FaceScape [46] FaceVerse [45] Ours

Figure 3. Compared to recent multi-view stero 3D face dataset,
our data exhibits sharper details and less noise.

3.2. Registration Pipeline

Registering all head scans against a common template
is a key requirement to effectively train our parametric head
model. First, we start with a rigid alignment into our canon-
ical coordinate system; second, we non-rigidly register all
scans to a common template.

3.2.1 Rigid Alignment

We leverage 2D face landmark detectors to obtain a rigid
transformation into the canonical coordinate system of the
FLAME model [21]. To this end, we deploy the Medi-
aPipe [23] face mesh detector and back-project a subset of
48 landmarks corresponding to iBUG68 annotations [36] to
the 3D scan. Since not all viewing angles of the scanner’s
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Figure 4. Method overview: at the core of our neural parametric head model lies a neural field representation that parameterizes shape
and expressions in disentangled latent spaces. Specifically, we propose a local MLP ensemble that is anchored at face keypoints (left). We
train this model by leveraging a set of high-fidelity 3D scans from our newly-captured dataset comprising various expressions for identity
(middle). In order to obtain the ground truth deformation samples, we non-rigidly register all scans to a common template (right).

trajectories are suited for 2D facial landmark detection, we
instead use frontal renderings of the colored meshes, which
yields robust detection quality. Note that the initial land-
mark detection is the only time we use the scanner’s color
images. We then calculate a similarity transform using [43]
to transform the detected landmarks to the average face of
FLAME.

3.2.2 Non-Rigid Registration

As a non-rigid registration prior, we first constrain the non-
rigid deformation to FLAME parameter space, before op-
timizing an offset for each vertex. Additionally, we back-
project 2D hair segmentation masks obtained by FaRL [50]
to mask out the respective areas of the scans.

Initialization. Given the 23 expression scans {Sj}23j=1 of
a subject, we jointly estimate identity parameters zid ∈
R100, expression parameters {zex

j }23j=1, and jaw poses
{θj}23j=1 of the FLAME model, as well as a shared scale
s ∈ R and per-scan rotation and translation corrections
{Rj}23j=1 and {tj}23j=1. Updating the initial similarity trans-
form is crucial to obtaining a more consistent canonical
alignment.

Let Φj denote all parameters affecting the j-th FLAME
model and VΦj

its vertices. We jointly optimize for these
parameters by minimizing

argmin
Φ1,...Φ23

23∑
j=1

[
λl∥Lj−L̂j∥1+d(VΦj ,Sj)+R(Φj)

]
, (1)

where Lj ∈ R68×3 denotes the back-projected 3D land-
marks, L̂j are the 3D landmarks from VΦj , d(VΦj , Sj) is
the mean point-to-plane distance from VΦj

to its nearest
neighbors in scan Sj , and R(Φj) regularizes FLAME pa-
rameters.

Fine tuning. Once the initial alignment has been ob-
tained, we upsample the mesh resolution by a factor of 16
for the face region, and perform non-rigid registration using
ARAP [39] for each scan individually.

Let V be the upsampled vertices, which we aim to regis-
ter to the scan S . We seek vertex-specific offsets {δv}v∈V ,
and auxiliary, vertex-specific rotation {Rv}v∈V from the
ARAP term. Therefore, we solve

argmin
{δv}v∈V

{Rv}v∈V

∑
v∈V

[
d(v̂,S)+

∑
u∈Nv

∥R(v−u)−(v̂− û)∥22

]
, (2)

using the L-BFGS optimizer, where v̂ = v+δv , Nv denotes
all neighboring vertices, and d(v̂,S) is as before. See the
supplemental for more details.

4. Neural Parametric Head Models
Our neural parametric head model separately represents

geometry in a canonical space and facial expression as for-
ward deformations; see Sections 4.1 and 4.2, respectively.

4.1. Identity Representation

We represent a person’s identity-specific geometry im-
plicitly in its canonical space as a SDF. Compared to
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template-mesh-based approaches, this offers the necessary
flexibility that is required to model a complete head with
hair. In accordance with related work on human body mod-
eling, e.g. [10, 27, 28], we choose a canonical expression
with an open mouth to avoid topological issues. While
a canonical coordinate system already reduces the dimen-
sionality of the learning problem at hand, we further tailor
our neural identity representation to the domain of human
heads; as described below.

4.1.1 Local Decomposition

Instead of globally conditioning the SDF network on a spe-
cific identity, we exploit the structure of the human face
to impose two important geometric priors. First, we em-
brace the fixed composition of human faces by decompos-
ing the SDF network into an ensemble of several smaller
local MLP-based networks, which are defined around cer-
tain facial anchors, as shown in Fig. 4. Thereby, we reduce
the learning problem into smaller, more tractable ones.We
choose facial anchor points as a trade-off between the rele-
vance of an area and spatial uniformity. Second, we exploit
the symmetry of the face by only learning SDFs on the left
side of the face, which are shared with the right half after
flipping spatial coordinates accordingly. More specifically,
we divide the face into K = 2Ksymm + Kmiddle regions,
which are centered at facial anchor points a ∈ RK×3. We
use M to denote the index set anchors lying on the sym-
metry axis, and S and S∗ for symmetric regions on the left
and right side respectively, such that for k ∈ S there is a
k∗ ∈ S∗ that corresponds to the symmetric anchor point.

In addition to a global latent vector zglob ∈ Rdglob , the k-
th region is equipped with a local latent vector zid

k ∈ Rdloc .
Together, the k-th region is represented by a small MLP

fk : Rdglob+dloc+3 → R (3)

(x, zid
glob, z

id
k ) 7→ MLPθk([x− ak, z

id
glob, z

id
k ]), (4)

that predicts SDF values for points x ∈ R3, where [·] de-
notes the concatenation operator.

In order to exploit face symmetry, we share the network
parameters and mirror the coordinates for each pair (k, k∗)
of symmetric regions:

fk∗(x, zid
glob, z

id
k∗) := fk(flip(x− ak∗), zid

glob, z
id
k∗), (5)

where flip(·) represents a flip of the coordinates along the
face symmetry axis.

4.1.2 Global Blending

In order to facilitate a decomposition that helps generaliza-
tion, it is crucial that reliable anchor positions a are avail-
able. To this end, we train a small MLPpos that predicts a
from the global latent zid

glob.

Since each local SDF focuses on a specific semantic re-
gion of the face, as defined by the anchors a, we addi-
tionally introduce f0(x, z

id
glob, z

id
0 ) = MLP0(x, z

id
glob, z

id
0 ),

which operates in the global coordinate system, hence cov-
ering all SDF values far away from any anchor in a. To
clarify the notation, we set a0 := 0 ∈ R3.

Finally, we blend all local fields fk into a global field

Fid(x) =

K∑
k=0

wk(x, ak)fk(x, z
id
glob, z

id
k ), (6)

using Gaussian kernels, similar to [13, 51], where

w∗k(x, ak) =

{
e

−||x−a||2
2σ , if k > 0

c, if k = 0
(7)

and wk(x, ak) =
w∗k(x, ak)∑
k′ w∗k′(x, ak′)

(8)

We use a fixed isotropic kernel with standard deviation σ
and a constant response c for f0.

4.2. Expression Representation

In contrast to our local geometry representation, we
model expressions only with a globally conditioned defor-
mation field; e.g. a smile will effect the cheeks corners
of the mouth and eye region. In this context, we define
zex ∈ Rdex as a latent expression description. Since such a
deformation field is defined in the ambient Euclidean space,
it is crucial to additionally condition the deformation net-
work with an identity feature. By imposing an information
bottleneck on the latent expression description, the defor-
mation network is then forced to learn a disentangled repre-
sentation of expressions.

More formally, we model deformations using an MLP

Fex(x, z
ex, ẑid) : Rdex+did-ex → R3. (9)

Rather than directly feeding all identity information into Fex
directly, we first project the information to a lower dimen-
sional representation

Ẑid = W [zid
glob, z

id
0 , . . . z

id
K ,a1, . . . ,aK ], (10)

using a single linear layer W , where did-ex denotes the di-
mensionality of the interdependence of identity and expres-
sion.

4.3. Training Strategy

Our training strategy closely follows NPMs [27] and se-
quentially trains the identity and expression networks in an
auto-decoder fashion.

Identity Representation For the identity space, we jointly
train latent codes Zid

j := {zid
glob,j , z

id
0,j , . . . , z

id
K,j} for each j
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in the set of training indices J and network parameters θpos
and θ0, . . . , θK , by minimizing

Lid =
∑
j∈J

LIGR+λa∥âj−aj∥22+λsyLsy+λid
reg∥Zid

j ∥22, (11)

where LIGR is the loss introduced in [16] which enforces
SDF values to be zero on the surface and contains an
Eikonal term. This ensures consistency between surface
normals and SDF gradients and is in similar spirit to
[16, 37]. For training, we directly sample points and sur-
face normals from our ground truth scans.

Additionally, we supervise anchor predictions aj using
the corresponding vertices from our registrations âj . The
last two terms serve regularization purposes, where

Lsy =
∑
k∈S

∥zid
k − zid

k∗∥22 (12)

enforces the local latent description of symmetric regions
to be close, and the final term encourages a well-behaved
distribution of both global and local latent descriptions cen-
tered around zero.

Expression Representation Once the identity representa-
tion is learned, we optimize for network parameters θex, W
and latent expression codes, {zex

j,l}j∈J,l∈L, where j indexes
identity and l indexes expressions. The deformation loss

Lex=
∑

i,j∈J,L
x∈Xj,l

∥Fex(x, z
ex
j,l, ẑ

id
j )−δ(x)j,l∥22+λex

reg∥zex
j,l∥22 (13)

directly supervises the deformation field using samples
x ∈ Xj,l, which have been precomputed from the reg-
istration. See the supplemental for more details.

5. Results
We aim to evaluate how well our method generalizes

from our training dataset of 87 identities to unseen ones,
and their unique expressions. Our test dataset consists of
6 female and 12 male identities in 23 expressions each.
We fit our model and baselines to frontal single view depth
maps, which are generated by rendering the unseen valida-
tion meshes and randomly sampling 5000 points. For abla-
tions with respect to the number of points and noise level,
as well as for a demonstration of real-world tracking with
NPHM using a commodity depth sensor, we refer to the
supplementary material. In our evaluation, we isolate the
reconstruction of identity and expression in section 5.1 and
5.2, respectively.

Mesh-Based Baselines. We evaluate against the Basel Face
Model (BFM) and FLAME as representatives of existing
template-based PCA-models. Furthermore, we compare
against a PCA model with delta expressions [2] trained on

our registered meshes and a local variant thereof. For the
local PCA model we utilize the same facial anchors as in
NPHM to divide each neutral registered mesh into regions,
which are separately represented by local PCA models. To
obtain a final prediction we use the same blending scheme
as described in Section 4.1.2. For all these models we addi-
tionally provide the 68 facial landmarks as input.

Implicit Baselines. We compare against ImFace [48] as
a neural backward deformation baseline. To this end, we
evaluate a variant of ImFace trained on the FaceScape
dataset [46] and one that we train on our dataset using their
preprocessing (denoted as ImFace*). Additionally, we com-
pare against NPMs [27], isolating the effect of our proposed
identity representation.

Metrics. To evaluate the quality of the reconstructions, we
report L1-Chamfer distance, normal consistency (N. C.),
and F-Score with a threshold of 1.5mm.

5.1. Identity Reconstruction

To separately evaluate the quality of our identity space,
we fit against a single neutral expression scan for each iden-
tity. These scans are aligned to each method’s canonical
coordinate system. We assist baselines that use a closed
mouth in their canonical space, i.e., baselines not trained on
our data, by optimizing these over all scans instead. More
details on the optimization strategy for each model can be
found in the supplemental.

Figure 5 and Table 2 present qualitative and quantita-
tive results, respectively. We observe that all neural field
methods consistently achieve more faithful reconstructions
and further note that the proposed local conditioning allows
NPHM to reconstruct details and statistically unlikely ele-
ments more reliably.

Method L1-Chamfer ↓ N. C. ↑ F-Score@1.5 ↑
BFM [32] 1.341e−2 0.936 0.319
FLAME [21] 0.640e−2 0.931 0.530
Global PCA [2] 0.563e−2 0.954 0.571
Local PCA [2] 0.416e−2 0.960 0.756
ImFace [48] 0, 404e−2 0.954 0.832
ImFace∗ [48] 0.312e−2 0.971 0.883
NPM [27] 0.200e−2 0.975 0.947
Ours 0.182e−2 0.978 0.954

* trained on our data

Table 2. Identity fitting to a single depth map in neutral expression.

5.2. Expression Reconstruction

To evaluate each model’s expression space, we fit it to
multiple expressions of the same person with the task of re-
covering one identity code per subject and one expression
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Input FLAME [21] Local PCA [2] ImFace* [48] NPM [27] Ours GT Scan

Figure 5. Model fitting: at inference time, we fit our model to sparse, partial input point clouds from single depth map. We compare our
method to widely-used state-of-the-art parametric face models, including FLAME [21], a local PCA [2], ImFace [48] and neural parametric
models (NPM) [27]. Our parametric model has significantly more surface detail and covers the entire head, including the hair region.

code per expression. For the neural forward deformation
models, NPM and NPHM, we utilize iterative root find-
ing [11] to fit the expression codes. For simplicity, we keep
the identity code fixed after fitting to the neutral scan. For
all other models we jointly solve for expression and identity
codes. Figure 6 and Table 3 show qualitative and quantita-
tive comparisons with our baselines, respectively. Owing
to the abiility of backward deformations to directly connect
the observed with the canonical space, ImFace reliably re-
constructs expressions. Nevertheless, it still suffers from
blurry reconstructions, compared to both NPM and NPHM.

See our supplemental for more details and an additional
comparison of jointly fitting identity and expression when
only a single depth observation is available.

5.3. Ablations

We ablate two main contributions of the proposed iden-
tity representation, by fitting identity codes to a neutral scan
without involving expressions. First, we analyze the effect
of the number of regions K of our ensemble, by comparing
against NPM [27], which effectively would be an ensem-
ble of size 1, and against versions with 12 and 26 regions

Method L1-Chamfer ↓ N. C. ↑ F-Score@1.5 ↑
BFM [32] 1.271e−2 0.937 0.508
FLAME [21] 0.679e−2 0.924 0.351
Global PCA [2] 0.515e−2 0.956 0.606
Local PCA [2] 0.535e−2 0.950 0.641
ImFace [48] 0.369e−2 0.959 0.824
ImFace∗ [48] 0.321e−2 0.971 0.879
NPM [27] 0.299e−2 0.962 0.891
Ours 0.272e−2 0.969 0.913

* trained on our data

Table 3. Expression fitting on 23 single depth maps per person.

and adjusted number of latent dimensions. Additionally, we
confirm the benefit of sharing weights for symmetric key-
points. Table 4 shows a quantitative evaluation of these two
ablations supporting our design choices.

5.4. Limitations

In our experiments, we show that NPHM can reconstruct
high-quality human heads; however, at the same time, we
believe that there are still several limitations and opportuni-
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Input FLAME [21] Local PCA [2] ImFace* [48] NPM [27] Ours GT Scan

Figure 6. Comparison on fitting expressions to sparse input point clouds: from a sparse set of depth observations of different expressions
from a frontal view (left), we compare FLAME [21], a local PCA [2], ImFace [48], neural parametric models (NPM) [27], and our method
against the respective ground truth scans.

Method L1-Chamfer ↓ N. C. ↑ F-Score@1.5 ↑
NPM [27] 0.254 0.972 0.906
K=12, w/ sy. 0.289 0.966 0.876
K=26, w/ sy. 0.237 0.971 0.913
K=39, w/o sy. 0.230 0.974 0.917
Ours 0.206 0.976 0.938

Table 4. Effect of the number of anchor points K and symmetry on
identity reconstruction performance. NPM represents the extreme
case of using exactly 1 anchor point. Note that to be consistent
with the original version, NPM differs to the other models in both
width and depth of the underlying MLP.

ties for future work. For instance we focus solely on the
geometry of heads while omitting any information about
appearance. This makes our model ill-suited for fitting to
RGB images using dense photometric terms. Here, an in-
teresting future avenue would be to explore learning appear-
ance, anchored on top of the geometric base model. In fact,
as part of our dataset we also provide the RGB frames cap-
tured during the 3D scanning process, which should facili-
tate learning such a texture model.

Another limitation is that currently we do not capture
loose hair, which limits general diversity; however, com-
pared to other existing face models such as 3D morphable
models, we significantly expand the application domain by
covering the entirety of the human head. In the future, we
still would like to cover a broader range of hairstyles.

6. Conclusion
We have introduced neural parametric head models, a

neural representation which disentangles identity and ex-
pressions of human heads, by representing geometry in
canonical space and modelling expressions as forward de-
formations. For our identity representation we have pro-
posed and validated a local representation that is tailored
towards human head. To train our model, we introduce
a new dataset of over 5200 high-fidelity 3D scans. Once
trained, our model can be fitted to sparse input point clouds,
for instance, captured by a commodity range sensor. Com-
pared to existing methods, such as widely used PCA-based
techniques, our model represents significantly more detail
while being able to regularize out noise of the underlying
point cloud inputs. Overall, we believe that our method is
an important step towards high-fidelity face capture and our
newly introduced dataset opens up opportunities to further
explore learning priors for neural face models.
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Appendix
A. Overview

In section B, we provide additional details about our
capture set-up and dataset. We provide details on the dif-
ferent approaches to fit point clouds for our model and all
baselines in Section C. Additionally, we provide results on
jointly reconstructing an unknown identity and expression
from a single point cloud in Section C.4 and provide a
proof-of-concept tracking algorithm for a commodity depth
sensor in Section C.6. Furthermore, we provide implemen-
tation details in Section D, and finally we evaluate the ro-
bustness of our model with respect to noise and sparsity in
Section E. For additional visual results, we refer to our sup-
plemental video. All of our code and data will be available
for research purposes.

B. Dataset
In order to train our model, we capture a high-quality

dataset of 3D head scans. To this end, we build a custom
scanning setup, which we will detail in the following. For
samples of our dataset, we refer to Figure 17.

B.1. Capture Setup

Figure 7 shows our custom capture setup, which is built
inside of an aluminium cube with an edge length of two
meters. We use a robotic actuator1 to rotate an inverted U-
shape around a participant’s head.

We place two Artec Eva scanners opposite of each other,
with complementary viewing angles on the ends of the in-
verted U-shape. The height and angles of the scanners are
adjusted to obtain an optimal coverage, while avoiding ex-
treme step angles which decrease scanning accuracy.

1We use an actuator of the TUAKA series of Sumitomot Drive
Technologies: https://us.sumitomodrive.com/en- us/
actuators

B.2. Details

During the six seconds of a 360° rotation, each scanner
roughly produces 95 frames. For each frame the Artec scan-
ners capture range measurements obtained by analyzing a
structured light projection using a stereo camera pair. Ad-
ditionally, a third camera captures RGB images every fifth
frame, as depicted in Figure 7. Note that we currently do
not use the captured RGB input, except for facial landmark
detection.

We process the individual 3D measurements of each
frame using the provided software of Artec. First, we align
the individual frames of the upper and lower scanner using
a global registration algorithm. The individual frames are
then fused into a single 3D mesh. Second, we use a hole-
filling algorithm and remove disconnected parts.

B.3. Expressions

As mentioned in the main paper, our 23 facial expres-
sions are adapted from FaceWarehouse [8]. We illustrate
the different expressions that we capture in figure 18. As
mentioned before, the neutral, open-mouthed expression is
of special importance since it serves as our canonical ex-
pression.

B.4. GDPR

All participants in our dataset signed an agreement form
compliant with GDPR. Please note that GDPR compliance
includes the right for every participant to request the timely
deletion of their data, which we will enforce as part of the
distribution process of our dataset.

C. Fitting
In the following, we detail how we use the learned prior

of our model and of baselines to fit the models to a sin-
gle depth frame. Additionally, we show qualitative results
of the remaining baselines for the identity and expression
fitting experiment in Figure 8 and 9, respectively. Fur-
thermore, we present quantitative and qualitative results for
joint identity and expression reconstruction based on a sin-
gle depth map in Section C.4.

C.1. Baselines Trained on other Datasets

Due to the difference in neutral expressions between our
model and baselines that were trained on other datasets, i.e.
BFM [32], FLAME [21], and ImFace [48], we cannot fit the
identity in an isolated fashion, since that would be unfair.
To mitigate this, we fit all these models jointly to all expres-
sions of a person. Additionally, we provide facial landmarks
and optimize for Equation 1 of the main paper. The results
are then used to evaluate both the identity and expression
fitting experiments. For all other models the fitting proce-
dures are described in the following.
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Artec Scanner     Robotic Joint
Instructions

RGB Upper Orbit

RGB Lower Orbit 3D Scan 3D Scan

Figure 7. Our custom capture set-up (left). Participants are seated on a height-adjustable chair. A screen presents instructions for the 23
different expression to perform. Next to the resulting 3D scans (right), the scanners also capture 1.3MP RGB images (middle).

Input BFM [32] Global PCA [2] ImFace [48] ImFace* [48] Ours GT Scan

Figure 8. More identity fitting comparisons against Basel Face Model [32], a global PCA [2], ImFace [48] and an ImFace model that is
trained on our data (marked with *). These are the remaining baselines that are missing in Figure 5 of the main paper.

C.2. Identity Fitting

Given a single view depth map Xp ⊂ R3 of an unknown
person in neutral facial expression, we optimize for an iden-

tity code zid, as well as an expression code zex. We include
the latter in the optimization, in order to account for minor
deviations from a perfect canonical facial expression.
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Input BFM [32] Global PCA [2] ImFace [48] ImFace* [48] Ours GT Scan

Figure 9. More expression fitting comparisons against Basel Face Model [32], a global PCA [2], ImFace [48] and an ImFace model that is
trained on our data (marked with *). These are the remaining baselines that are missing in Figure 6 of the main paper.

PCA-Based Models For this purpose, we again optimize
for equation 1 but only provide the neutral depth map and
corresponding landmarks.

ImFace Since ImFace utilizes backward deformations,
the observed points Xp in posed space can be backward-
warped into canonical space, where Fid can directly act on
them. Therefore, the fitting task can be formulated naturally
to minimize:∑

xp∈X
|Fid

(
F←ex (xp, z

ex), zid) |+ λR1(z
id, zex), (14)

where R1 includes the same regularization terms used in
ImFace [48]. We write F←ex with an arrow to denote
backward-direction of the deformation field of ImFace and
Fid for its SDF in canonical space. Note that due to simplic-
ity of discussion, we ignore the fact that their Fid is com-
posed of another deformation field and a template SDF. We
use the authors’ official code and hyperparameters.

NPM and NPHM For forward deformation models, for-
mulating a loss to jointly optimize for zid and zex is non-
trivial. The authors of NPM [27] proposed a formulation
that uses a TSDF grid estimated from the depth observa-
tions. Instead, we resort to the iterative root finding scheme
proposed in SNARF [11], that inverts the forward defor-
mation. Given a point xp ∈ Xp in posed space, its corre-
sponding points in canonical space is its preimage under the

forward-deformation F→ex . The authors of [11] propose to
solve for

xc = argmin
x

|xp − F→ex (x, z
ex)| (15)

iteratively to establish a corresponding point xc in canoni-
cal space. In order to avoid backpropagation through this
iterative procedure, they utilize analytical gradients instead,
which can be derived as described in [1]. Using these cor-
respondences, we can then resort to the loss in equation 14

∑
xp∈X

|Fid
(
xc, z

id) | +
λfit

glob∥zid
glob∥22+λfit

ex∥zex∥22+λfit
loc

K∑
k=1

∥zid
k ∥22+λfit

syLsy,

(16)

where xc replaces the result of the backward deformation.
The second line regularizes all latent codes, as well as the
difference between symmetric facial regions. For NPM we
simply omit the local latent code and symmetry regular-
ization terms. Furthermore, we did not observe topolog-
ical issues and therefore stick with a single initialization
xinit = xp for the iterative root finding.

For our ablation in Section 5.3 of the main paper, as well
as, Section E, we isolate the expression component com-
pletely and replace xc with xp, assuming that the observed
pose is perfectly neutral.
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Input ImFace [48] ImFace* [48] NPM [27] Ours GT Scan

Figure 10. Results when fitting both identity and expression codes jointly on a single depth map. We compare against ImFace [48], an
ImFace that is trained on our data (marked with *), and NPM [27].

C.3. Expression Fitting

In our expression fitting experiment, we investigate the
models’ performance to obtain zid and {zex

s }Ss=1, given S
observed point clouds {Xs

p}Ss=1 in posed space, where S is
the total number of scans per person.

For our PCA-based baselines, as well as both variants of
ImFace, we jointly optimize for the parameters of interest
using the same losses as in the previous section.

For the forward deformation models, we find the zid from
the identity fitting already provides a good estimate. For
simplicity, we then keep zid fixed and only optimize for
{zex

s }Ss=1 using equation 16.

C.4. Single-Expression Fitting

The expression fitting task in the main paper attempts
to evaluate the expressiveness of each model’s expression
space by constraining the identity codes to remain the same
over all scans of one person.

Here, we show an additional experiment that aims to re-
construct zid and zex jointly given only a single depth map
of an unknown person in arbitrary expression.

Table 5 reports quantitative numbers that further sup-
port the effectiveness of the proposed model and Figure 10
shows qualitative results.

Method L1-Chamfer ↓ N. C. ↑ F-Score@1.5 ↑
ImFace [48] 0.375e−2 0.966 0.825
ImFace∗ [48] 0.320e−2 0.972 0.879
NPM [27] 0.243e−2 0.969 0.928
Ours 0.207e−2 0.974 0.947

* trained on our data

Table 5. Fitting performance from a single depth map of unknown
identity and unknown expression.
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C.5. Hyperparameters for NPM and NPHM

We optimize Equation 16 using the Adam optimizer for
700 iterations. The optimization procedure starts with a
learning rate of 0.01 and is decayed by a factor of 10 af-
ter epochs 200, 350, and 500. For our model we use
λfit

glob = 0.05, λfit
loc = 0.05 and λfit

ex = 0.003 to regularize
the global and local identity and expression components, re-
spectively. Additionally, we encourage symmetry λfit

sy = 1.0

for the first half of iterations and then set λfit
sy = 0.0. Addi-

tionally, we divide λfit
loc and λfit

glob by a factor of 5 at epochs
200 and 500, such that the model first learns the coarse fa-
cial expression before focusing on the details of the identity.
For NPM, we use the exact same hyperparameters as for
our model. However, the local regularization and symmetry
prior have no effect.

C.6. Real-World Tracking

Additionally, we evaluate our model in a real-world face
tracking scenario. For this purpose, we fit our model against
a depth video captured with a Kinect Azure, a commodity
depth sensor. Figure 11 shows our results of a single frame
and a comparison to the FLAME model. For the full track-
ing results, we refer to our supplemental video.

Depth Map FLAME [21] Ours RGB

Figure 11. Real-world tracking. For a single frame, we show from
left to right: the depth map obtained from a commodity depth sen-
sor, FLAME, and our reconstructions, and an image as reference.

For proof of concept, we optimize for zid using a single
frame and subsequently optimize for head pose and expres-
sion parameters for each frame. Additionally, we include a
total variation prior along the temporal axis over estimated
head pose and expression parameters. More specifically, we
add

LTV (ϕ) =

T∑
t=1

∥ϕ(t+ 1)− ϕ(t)∥ (17)

to the optimization problem, where ϕ(t) denotes any of
the time dependent optimization parameters, i.e. expression
and pose.

To coarsely align the coordinates system of the back-
projected depth map into our canonical coordinate system,
we calculate the similarity transform using [43] from de-
tected landmarks to the landmarks of the average FLAME

face (note that our model shares the coordinate system of
FLAME).

To further guide the optimization, we also include land-
marks at the mouth and eye corners, as well as on the top
and bottom of the lips, which we denote as at ∈ R8×3 for
each time step.

First, we utilize the detected landmarks for the initial
identity fitting on a chosen frame tcan. Here, the landmarks
serve as additional supervision for zid

glob, by including the
term

∥MLPpos(z
id
glob)− atcan∥1. (18)

In this stage, we additionally estimate normals using a So-
bel filter and use them as additional supervision signal;
cf. Equation 23.

During expression fitting, we incorporated the eight fa-
cial landmarks as direct supervision for the forward defor-
mation network:

T∑
t=1

∥Fex(MLPpos(z
id
glob), z

ex
t , z

id
glob)− at∥1. (19)

D. Implementation Details
We implement our approach – including registration,

training, and inference – in PyTorch and, unless otherwise
mentioned, run all heavy computations on the GPU, for
which we use an Nvidia GTX 3090.

D.1. Non-Rigid Registration

In Equations 1 and 2 of the main paper, we use the point-
to-plane distance d(v,S) from a point v ∈ R3 to a surface
S ⊂ R3. To make our energy terms more robust, we filter
this distance based on a distance δd and normal threshold
δn, such that

d∗(v,S) =


0, if d(v,S) > δd,

0, if ⟨n(v), n(s)⟩ > δn,

d(v,S), otherwise,
(20)

where
d(v,S) = min

s∈S
|⟨v − s, n(s)⟩| (21)

is the unfiltered point to plane distance and n(v) and n(s)
denote the vertex normals of v in the template mesh and the
normals of its nearest neighbor in the target S, respectively.

FLAME Fitting We regularize our optimization in
FLAME parameter space using

R(Φj) = λid
∥zid∥22
20

+ λex∥zexj∥22 + λjaw∥θj∥22
+ λrigid(∥Rj∥22 + ∥tj∥22). (22)

15



We use λid = 1/5000, λex = 1/3000 to regularize the
identity and expression parameters respectively. For the jaw
angle and the rigid parameters, we regularize with λjaw =
1/10 and λrigid = 1/10. Since the point-to-plane distance
initially gives an unreliable signal, despite our filtering we
down-weight the point-to-plane distance with λd = 1/15
for the first 300 iterations. For all remaining iterations of
the 2000 iterations, we set λd = 1. We solve Equation 1
using the Adam [18] optimizer with a learning rate of 4e−3,
which is decayed by a factor of 5 for the final 500 iterations.

Finetuning We exponentially decay the weight λARAP of
the ARAP [39] term with a factor of 0.99. We start with
λARAP = 10.0, but do not decay below λARAP = 0.1. On
average our implementation converges after 400-500 itera-
tions of the L-BFGS optimizer and takes roughly 4 minutes
on a single Nvidia 1080 GPU.

Since both the FLAME fitting and finetuning require
a large number of nearest neighbor queries between ver-
tices of the optimized mesh and the target mesh, we uti-
lize FAISS [17], which provides efficient, GPU-optimized
search indices for approximate similarity search.

D.2. Data Preparation and Training

Identity Training To train Fid, we use the loss

LIGR =
∑
x∈δX

λs|Fid(x)|+ λs (1−⟨∇Fid(x), n(x)⟩)

+
∑

x∈X∪δX

λeik(∥∇Fid(x)|2−1)

+
∑
x∈X

λ0exp(−α|Fid(x)|)

(23)

introduced in [16] and [37], where we omit the condi-
tioning of Fid for simplicity. Here, δX denotes samples on
the surface and X denotes samples in space. We choose
λs = 2, λn = 0.3, λeik = 0.1 and λ0 = 0.01. For the ad-
ditional hyperparameters mentioned in Equation (11)we set
λid

reg = 0.005, λa = 7.5 and λsy = 0.005.
Furthermore, we train for 15, 000 epochs with a learning

rate of 0.0005 and 0.001 for the network parameters and la-
tent codes, respectively. Both learning rates are decayed by
a factor of 0.5 every 3, 000 epochs. We use a batch size of
16 and |δX| = 500 points sampled on the surface. Samples
X are obtained by adding Gaussian noise with σ = 0.01 to
surface points and adding some points sampled uniformly
in a bounding box. Additionally, we use gradient clipping
with a cut-off value of 0.1 and weight decay with a factor
of 0.01.

Since this loss only requires samples on the surface di-
rectly, we precompute 2, 000, 000 points sampled uniformly
on the surface of the 3D scans, after removing the lower part

of the scan, which we determine using a plane spanned by
three vertices on the neck of our registered template mesh.
Since our focus lies on the front part of the face, 80% of
these points are sampled on the front and 20% on the back
and neck. The frontal area is determined by a region on our
registered meshes, which covers the face, ears, and fore-
head. We additionally sample surface normals.

Training the identity network takes about 12 hours until
convergence on a single GPU.

Expression Training For the training of Fex, we follow
NPMs [27] and precompute samples of the deformation
field, which can be used for direct supervision of Fex.

More specifically, let M and M′ be a neutral and ex-
pression scan. For a point x ∈ M, we determine the corre-
sponding point x′ ∈ M′ using barycentric coordinates and
construct samples of the deformation field δ(x) = x′ − x.
While strictly speaking the deformation is only defined for
points on the surface, we compute field values close to
the surface by offsetting along the normal direction, i.e.
δ(x + αn(x)) = x′ + αn(x′) − (x + αn(x)), where we
sample α ∼ N (0, τiI3) twice with standard deviations
τ1 = 0.02 and τ2 = 0.004. Overall, we sample 2, 000, 000
points per expression.

For the expression training we use λex
reg = 5e−5 and a

learning rate of 5e−4 and 1e−3 for the network and latent
codes, respectively. We train for 2, 000 epochs with a learn-
ing rate decay of 0.5 every 600 epochs, gradient clipping at
0.025 and weight decay strength 5e−4. We use 1000 sam-
ples to compute Lex and a batch size of 32.

Training the expression network until convergence takes
about 8 hours on a single GPU.

D.3. Architectural Details

D.3.1 NPMs

In the main paper, we compare our proposed method against
our implementation of NPMs [27]. Instead of the proposed
ensemble of local MLPs, NPMs use the original architec-
ture of DeepSDF [29] with 8 layers, a hidden dimensional-
ity of 1024, and Zid = 512 dimensions for the latent vector
for Fid.

The expression latent dimension is dex = 200 and the
MLP has 6 hidden layers with 512 hidden units. We use
identical settings for NPHM.

D.3.2 NPHMs

Our default choice for the number of anchor points is K =
39, of which Ksymm = 16 are symmetric. This leads to
7 anchor points lying directly on the symmetry axis, and
hence parameters of 16 + 7 = 23 local DeepSDFs have
to be optimized. Figure 12 depicts the arrangement of the
anchor points.
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(a) K = 12 (b) K = 26 (c) K = 39

Figure 12. Anchor Layout: Each anchor is assigned a unique color, except for symmetric pairs which share colors. We calculate vertex
colors by blending in the same fashion, as for the ensemble of local MLPs. Consequently, the colors show the influence that each local
MLP has on its surrounding. Black denotes the color of f0. Anchor points were chosen as vertices of the average over all registrations.
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Figure 13. Robustness of our method with respect to (a) the number of observed 3D points and (b) additive Gaussian noise to the input
point cloud. The results indicate that both NPM and NPHM are similarly effected by worsening quality of observations.

The identity latent space is composed of the shared
global part zid

glob ∈ Rdglob with dglob = 64 and local latent
vectors zid

k ∈ Rdloc with dloc = 32. Our local MLPs have
4 hidden layers with 200 hidden units each and follow the
DeepSDF [29] architecture. Note that the total number of
latent identity dimensions did = (K + 1) ∗ dloc + dglob =
1344.

Furthermore, we use σ = 0.1 and c = e−0.2/σ
2

to blend
the ensemble of local MLPs. Figure 12 illustrates the re-
sulting influence that the individual local MLPs have on the
final prediction.

Anchor Points In the main paper, we ablated the number
of face anchor points. Figure 12 shows a comparison of
the different anchor layouts that we ablated. For a lower
number of anchors, we increase dloc such that did is roughly
preserved.

For the ablation of our symmetry prior, we keep the exact
same anchor layout; however, do not share network weights
for symmetric anchors, do not mirror coordinates, and do

not include the symmetry regularizer during fitting.

D.4. Metrics

Since we quantitatively compare models that represent
vastly different regions of the human head, we restrict the
calculations of our metrics to the face region. This also
aligns with the fact, that each model only observes a sin-
gle, frontal depth map, i.e. other parts of the head can only
be estimated roughly.

To this end, we determine the facial area by all points
which are closer than 1cm to a region defined on our reg-
istered template mesh. Within this region, we sample
1,000,000 points with their corresponding normals on the
ground truth as well as on each reconstruction. Using these
sampled points and normals, we compute all of our metrics.

Please note, that this evaluation does not account for the
fact that reconstructions of closed-mouth expressions might
contain the inner part of the mouth. The inner part of the
mouth is not visible by the 3D Scanners and hence is miss-
ing in the ground truth. This especially is a disadvantage for
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forward deformation models, since they reconstruct large
parts of the inner mouth region. To account for this one
might have to exclude sampled points in the reconstructions
that are not visible, e.g. by rendering depth images from
multiple views and backprojecting them to 3D.

E. Additional Ablations

The experiments in the main paper were restricted to sin-
gle view depth maps with 5000 points. Here, we present
a thorough evaluation with respect to the number of input
points and with respect to artificial Gaussian noise. Note
that these experiments aim to ablate the different identity
representations between NPM and NPHM. Henc, we only
perform identity fitting in the following.

Number of Points: Figure 13a shows how the number
of observed points effect the reconstructions quantitatively.
We evaluate on 250, 500, 1000, 2500, 5000, and 10000
points, respectively. Figure 15 illustrates the effect quali-
tatively.

Noise: Similarly, we ablate against additive Gaussian
noise with standard deviations of 0.0mm, 0.3mm, 0.75mm
and 1.5mm. Quantitative and qualitative results are pre-
sented in Figures 13b and 14, respectively.

NPM

Ours

Input 
Point
Cloud

Noise
Level

0.75 mm 0.30 mm 0 mm GT Scan

Figure 14. Qualitative comparison of NPMs [27] and our method
with respect to noise in the input point cloud. We perturb the points
by applying random Gaussian noise with different standard devia-
tions.
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Figure 15. Qualitative comparison of NPMs [27] and our method
with respect to the number of points in the input point cloud.

E.1. Deformation Consistency

Furthermore, we illustrate the behaviour of our expres-
sion network Fex in figure 16, by assigning a distinctive UV-
map as colors to each vertex. To be more specific, we assign
vertex colors by projecting a UV-map parallel to the ”depth-
dimension”. We then fix vertex colors and deform the mesh
using Fex. The results show that semantic consistency is
preserved well, which is a direct consequence of our train-
ing strategy. Note that i3DMM [47] and ImFace [48] report
slightly less consistent correspondences.
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Neutral Geometry Deformed Geometry

Figure 16. Deformation Consistency: We show surface correspondences between neutral and posed meshes from our test set. UV-
coordinates are assigned to the mesh in canonical space after running marching cubes (left). The right side shows 4 different expressions
for each example, which arise by deforming the neutral mesh, which preserved the uv-coordinates.
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Neutral Expressions
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Figure 17. Additional 3D head scans from our newly-captured dataset. Here, we show how different participants perform expressions in
their own unique ways.
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Figure 18. We capture 20 expressions for each participant, and included three bonus expressions for the latest 50 participants. Here, we
show two subjects performing all expressions.
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