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Figure 1. We present MonoNPHM, a neural-field-based parametric head model (left), for dynamic 3D head reconstruction in monocular
videos (right). On the left we demonstrate the effect on a reconstructed human head, by individually varying shape (top box), expression
(middle box) and appearance (bottom box). The right-hand side illustrates three input RGB frames (top row), and our reconstructed geom-
etry (bottom row). We also show the reconstructed appearance under estimated lighting conditions, which is the basis of our reconstruction.

Abstract

We present Monocular Neural Parametric Head Models
(MonoNPHM) for dynamic 3D head reconstructions from
monocular RGB videos. To this end, we propose a latent ap-
pearance space that parameterizes a texture field on top of a
neural parametric model. We constrain predicted color val-
ues to be correlated with the underlying geometry such that
gradients from RGB effectively influence latent geometry
codes during inverse rendering. To increase the represen-
tational capacity of our expression space, we augment our
backward deformation field with hyper-dimensions, thus im-
proving color and geometry representation in topologically
challenging expressions. Using MonoNPHM as a learned
prior, we approach the task of 3D head reconstruction using
signed distance field based volumetric rendering. By nu-
merically inverting our backward deformation field, we in-
corporated a landmark loss using facial anchor points that
are closely tied to our canonical geometry representation.
To evaluate the task of dynamic face reconstruction from

monocular RGB videos we record 20 challenging Kinect
sequences under casual conditions. MonoNPHM outper-
forms all baselines with a significant margin, and makes an
important step towards easily accessible neural parametric
face models through RGB tracking.

1. Introduction
Tracking, animation, and reconstruction of human faces
and heads under complex facial movements are funda-
mental problems in many applications such as computer
games, movie production, telecommunication, and AR/VR
settings. In particular, obtaining high-fidelity 3D head re-
constructions from monocular input videos is a common
scenario in many practical settings, e.g., when only a com-
modity webcam is available.

Recovering the 3D head geometry throughout a monoc-
ular RGB video, however, is inherently under-constrained.
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The task is further complicated in the presence of depth am-
biguity, complex facial movements, and strong lighting and
shadow effects. Therefore, to disambiguate the 3D scene
dynamics, it is common to introduce a set of assumptions
about plausible facial structure, expressions, and appear-
ance, often in the form of a model prior.

To regularize this otherwise heavily under-constrained
problem, the most widely adopted model-prior, are 3D mor-
phable models (3DMMs) [7], which capture shape, expres-
sion, and appearance variations through the use of princi-
pal component analysis (PCA) over a dataset of 3D scans
that have been registered with a template mesh. There-
fore, their expressiveness is often limited by the underlying
(multi-)linear statistical model, the resolution of the tem-
plate mesh, and its topology. Recent neural variants of
mesh-based 3DMMs [27, 43, 66, 78, 82] and neural-field-
based parametric face models [26, 47, 85, 86, 88] constitute
more detailed model priors, but so far do not tackle 3D head
reconstruction from monocular RGB videos.

In this work, we propose MonoNPHM, a neural para-
metric head model tailored towards monocular 3D recon-
struction from RGB videos. We model an appearance field,
coupled with a signed distance field (SDF) that represents
the geometry, in canonical space. Facial expressions are
represented using a backward deformation field that estab-
lishes correspondences from posed space into the canonical
space. Additionally, we augment our backward deformation
model using hyper-dimensions [58], in order to increase the
dynamic capacity of our model. Building on top of our para-
metric model, we perform photometric 3D head tracking,
by optimizing for latent geometry, appearance, and expres-
sion codes. To establish an RGB loss, we utilize SDF-based
volumetric rendering [79] of rays in posed space which are
backward-warped into canonical space. To account for dif-
ferent lighting conditions we incorporate spherical harmon-
ics shading [64] into the volumetric rendering. Addition-
ally, we find that a landmark loss is crucial for robust track-
ing through extreme facial movements. We use a discrete
set of facial anchor points that is tightly coupled with our
geometry representation [26]. We forward-warp the an-
chors by numerically inverting our backward deformation
field using iterative root finding [16] and project them into
image space to compute our landmark loss.

Compared to our strongest baselines we improve the re-
construction fidelity, measured by unidirectional chamfer
distance, by 20%.

To sum up our contributions are as follows:
• We introduce MonoNPHM, a neural parametric head

model that jointly models appearance, geometry, and ex-
pression and is augmented with hyper-dimensions for an
increased dynamics capacity.

• We tightly condition our appearance network on the un-
derlying geometry, to allow for meaningful gradients dur-

ing inverse rendering, which we formulate based on dy-
namic volume rendering of implicit surfaces.

• We introduce a landmark loss using discrete facial anchor
points that are tightly coupled with our implicit geometry.

2. Related Work
Mesh-based face models Starting with the seminal work
on 3DMMs [7], template-mesh-based PCA models [4, 8,
46, 61, 87] have been widely used for many application
in computer graphics and vision. To relax the rigid lin-
ear assumption of PCA, subsequent efforts utilized varia-
tion auto-encoders(VAEs) [40], generative adversarial net-
works (GANs) [28], and diffusion models [30] to replace
the PCA-basis underlying classical mesh-based 3DMMs
[23, 27, 43, 55, 66, 78, 82].

3D face reconstruction from RGB Reconstructing the
3D geometry of a head from RGB images or videos is
a fundamental problem in computer vision. Standard ap-
proaches optimize the parameters of a 3DMM based on
the 2D input [3, 25, 76, 82]. Optimizing the parameters
from arbitrary poses, especially in the presence of occlu-
sions and strong shadows, is a very challenging problem.
Learning-based methods address this issue by training neu-
ral networks to predict the face representation from the in-
put images [17, 19, 48, 70, 75]. In order to model details
beyond the 3DMM template, such as wrinkles, several ef-
forts utilize shape-from-shading [24, 33, 72] while others
model facial details as displacements maps [14, 20, 35, 44].
Instead of relying on a fixed-topology template mesh, we
approach 3D reconstruction from RGB inputs using neural-
field-based parametric head models, allowing for the repre-
sentation of complete human heads with varying topologies.

Neural field-based face models Recent advances on neu-
ral fields [81], have shown impressive results on geom-
etry reconstruction and generation [51, 56, 62, 79, 83],
neural radiance fields (NeRFs) [15, 38, 52, 53], and dy-
namic scene reconstructions [2, 32, 42, 57, 58, 71]. Such
techniques have been recently used in the context of 3D
generative models [5, 11, 12, 80], and NeRF-based para-
metric models [9, 10, 31, 77, 94] to generate high-fidelity
heads that can be rendered from different views. Others
have focused on highly detailed geometry representation
[26, 85, 86, 88, 89], design a diffusion prior for robust re-
construction from depth sensors [73], and facilitate few-
shot 3D reconstruction from RGB images using a mixture
of model-based fitting and test-time fine-tuning of model
parameters [9, 47, 65]. Closer to our work, [47] is able to
reconstruct an animatable head avatar from a single image
in the wild. In this work, however, we focus on dynamic
3D reconstruction from monocular RGB videos by explic-
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Figure 2. Method overview: (a) Shows how MonoNPHM operates: First, points xp in posed-space are backward-warped through Fexp

into canonical space (indicated by red star and arrow). Our canonical geometry and appearance fields are conditioned on facial anchors
ac (yellow and gray points in canonical space). Instead of conditioning Fapp on canonical coordinates (xc, ω), we use hidden features
hgeo extracted from the geometry network. (b) We approach tracking using SDF-based volumetric rendering [79] to build phomoetric and
silhoutte terms. Additionally, we enforce a landmark loss by numerically inverting Fexp using iterative root finding (as indicated by the
yellow arrow on the left).

itly modeling the deformations, which allows us to obtain
correspondences across the video.

Person-specific head avatars To escape the limitation of
generalizing parameter space, methods for person-specific
avatars from monocular videos, have shown impressive re-
sults. These methods usually incorporate a 3DMM to in-
troduce control in the neural implicit representation [1, 22,
50, 63, 90, 93, 96]. However, they lack generalization and
as such, require to be trained per video, in contrast, to our
method that generalizes across identities and expressions.

A different line of work focuses on the construction
of photo-realistic avatars from abundant multi-view video
recordings [41, 50, 63, 69].

3. MonoNPHM
Our work aims at dynamic 3D Face reconstruction in
monocular RGB videos. We approach this heavily under-
constrained task using model-based photometric tracking
through inverse SDF-based rendering. In this section we
describe the construction of our underlying, neural field-
based model, MonoNPHM, illustrated in Fig. 2, along with
its disentangled parametric spaces for shape (Sec. 3.1), ap-
pearance (Sec. 3.2) and expression information (Sec. 3.3).
In Sec. 4 we propose a model-based dynamic 3D recon-

struction algorithm, based on MonoNPHM.

3.1. Canonical Geometry Representation

We represent the head geometry in canonical facial expres-
sion, as described by latent code zgeo, using a neural SDF

Fgeo : R3+dgeo → R1, xc 7→ SDF(xc), (1)

operating on points xc in canonical space. Such an implicit
representation provides the necessary topological flexibility
to describe complete heads, including hair.

We follow NPHM [26] and compose Fgeo as an ensem-
ble of local MLPs

Fgeo(xc, zgeo)=
∑

k∈Nxc

wk(xc,a
k
c )f

k
geo(xc−akc ; zgeo),

(2)
which are centered around facial anchor points akc =
A(zgeo) ∈ R65×3, that are predicted by a small MLP A
based on the geometry code zgeo. Therefore, the anchor
positions constitute an integral part of the pipeline and pro-
vide an important discrete structure which we leverage as a
landmark loss for monocular tracking in Sec. 4.4.

For this purpose we design an anchor layout consisting
of 65 points, s.t. the most important landmarks of common
detectors coincide with anchor points, as shown in Fig. 2.
To account for the increased number of anchors, we restrict
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the computation to the bipartite kNN-graph from xc to its
8 nearest anchors Nxc , Compared to NPHM, which eval-
uates all local MLPs, in this case 65, this is more than an
eight-fold reduction in memory. To account for the non-
uniform spatial arrangement of anchors, we re-scale wk for
each neighborhood separately. Details are provided in our
supplementary material.

3.2. Canonical Appearance Representation

We model appearance changes between subjects using sep-
arate latent codes zapp, that condition a texture field Fapp.

To emphasize the dependence of appearance on the ge-
ometry, we incorporate a strong connection between the
two networks, similar to PhoMoH [86]. Our motivations
come from the fact that an appearance space, which is com-
pletely independent of the geometry, could reconstruct the
observed color images without providing meaningful gradi-
ents for the latest geometry codes.

To this end, we condition our texture field Fapp, on fea-
tures hgeo(xc) ∈ R16 which are extracted from the last
layer of the geometry MLP Fgeo using two narrow linear
layers. As illustrated in Fig. 2, Fapp follows the same lo-
cal structure as our geometry network, i.e. local appearance
MLPs

fk
app(h

k
geo(xc); zapp) ∈ [0, 255]3 (3)

are blended using the same weights as in Eq. (2). As we will
show later in Sec. 5.4, removing the dependence of Fapp on
spatial coordinates xc and using features hgeo(xc) instead,
is beneficial for RGB-based 3D reconstruction.

3.3. Representing Dynamics

While both previous components operate in canonical
space, it is the task of our deformation network

Dexp : R3+dexp+dgeo → R3, xp 7→ xc (4)

to backward-warp points xp in posed space into canonical
coordinates xc. Such a formulation implies that all changes
in the geometry and appearance fields between two expres-
sions can be explained through a deformation of space.

To relieve this strong assumption, we relax the for-
mulation by adding hyper-dimensions, or ambient dimen-
sions, [58] to the output of the deformation network, i.e.
Dexp(xp; zexp, zgeo) = (xc, ω) ∈ R3+h, where h is the
number of hyper-dimensions (in practice we use h = 2).
Consequently, Fgeo is provided with canonical coordinates
and hyper-coordinates ω, which increase the dynamic ca-
pacity of the overall network. Fig. 5 demonstrates the topo-
logical issues that arise without using hyper-dimensions.

Following previous work [26, 54], Fexp is conditioned
on both zexp and zgeo since the identity information is rel-
evant to find correct correspondences between xp and xc.

3.4. Training

We train all model components and latent codes end-to-end
using an auto-decoder formulation [56]. Given a public
dataset consisting of high-quality textured 3D scans [26],
we sample points xp near the mesh surface and pre-compute
SDF(xp) and RGB(xp) values for direct supervision of our
geometry and color fields. Conceptually, we optimize for
model parameters Θ and latent codes Z

argmin
Z,Θ

∑
s∈S,e∈Es

λSDF|Fgeo(Fexp(xp))− SDF(xp)|+

λRGB|Fapp(hgeo(xc))− RGB(xp)|+ λregLreg, (5)

where Lreg, among others, imposes regularization on all la-
tent codes, supervises anchor predictions, and regularizes
deformations and predicted hyper-dimensions to be small.
We provide more details about the training and network ar-
chitectures in our supplementary document.

4. 3D Dynamic Face Reconstruction
Our main goal is tracking heads in the parametric space
of MonoNPHM, in the case of a single, monocular RGB
input video. In such a challenging scenario, it is essen-
tial that a strong, but expressive, model-prior can guide
the optimization through the often under-constrained task.
We conceptually visualize this task in Fig. 2. Given a
video sequence of RGB frames {I1, . . . IT }Tt=1, associ-
ated silhouettes {S1, . . . ST }Tt=1 and 2D facial landmarks
{L1, . . . , LT }Tt=1 we aim to reconstruct model parameters
ϕ = {zapp, zgeo} ∪ {zexp}Tt=1, composed of time-invariant
codes zgeo and zapp, as well as, per frame expression codes
ztexp. We solve the tracking task by minimizing the energy

argmin
ϕ,ζ,Π

T∑
t=1

Lt
RGB + λsilLt

sil + λlmLt
lm + λregLt

reg (6)

with respect to latent codes ϕ, head poses Π = {Rt, tt}Tt=1,
as well as, lighting parameters ζ ∈ R9 of a 3-band spherical
harmonics approximation [64].

The data term of our energy contains a pixel-level RGB
loss LRGB and silhouette loss LS , as explain in Secs. 4.1
to 4.3, and a landmark loss Llm for coarse guidance of the
expression (see Sec. 4.4). We describe our regularization
term and optimization strategy in Sec. 4.5 and Sec. 4.6, re-
spectively.

4.1. Rendering Formulation

To relate the 3D neural field, parameterized by the latent
codes, with the 2D observations, we perform volumetric
rendering in posed space. Given intrinsic camera param-
eters K, we transfer the head pose into an extrinsics matrix
Et = [Rt|tt], and shoot a ray rp(τ) = o+τ ·d into the scene
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at time t. Samples along the ray are warped into canonical
space

rc(τ) = Dexp(rp(τ); z
t
exp, zgeo). (7)

Consequently, we infer SDF values Fgeo(rc(τ); zgeo) in
caonical space. For volume rendering, we rely on the for-
mulation of NeuS [79] to transfer SDF values along a ray
into rendering densities σ(rc(τ)). In total, predicted RGB
values c(τ) along a ray are aggregated into pixel colors

Ît(r)=

∫ τf

τn

w(τ)c(τ)dτ (8)

using volume rendering [36, 52]. Here, rendering weights
w(τ) and the accumulated transmittance T (τ) are defined
as follows:

w(τ) = T (τ)σ(rc(τ)), and T (τ) = e−
∫ τ
τn

σ(rc(s))ds. (9)

4.2. Spherical Harmonics Shading

To bridge the domain gap between our albedo appearance
space, and in-the-wild lighting effects, we include a 3-bands
spherical harmonics as a simple approximation for the scene
lighting [64]. Thus, we obtain shaded RGB predictions

c(τ) = SHζ(n(τ))Fapp(hgeo(rc(τ)); zapp) (10)

by multiplying predicted colors with the spherical harmon-
ics term, parameterized by ζ ∈ R9. For this, we use world
space normals

n(τ) = Rt∇xp
Fgeo(xc; zgeo), (11)

where the dependence on xp is included in the relation
xc = Fexp(xp; zexp, zgeo). We show the importance of
accounting for lighting effects in Sec. 5.4.

4.3. Rendering Losses

The most important term in our inverse rendering is the
color loss Lt

RGB = MAE(Ît, It), which measures the av-
erage L1-loss over all pixels in the foreground region, be-
tween predicted image colors Ît and observed images It.

Additionally, we supervise the silhouette St using an av-
erage binary cross-entropy loss Lt

sil = BCE(Ŝt(r), St(r))
over all pixels, with predicted forground

Ŝt =

∫ τf

τn

w(τ)dτ. (12)

4.4. Landmark Loss

Next to the above-mentioned rendering losses we observe
that the optimization can get stuck in local minima for ex-
treme mouth movements. We address this issue by incorpo-
rating a landmark loss, a common practice in face tracking.

For this purpose, we exploit the structure of the underly-
ing NPHM model that is offered through its anchor points
A(zgeo) = ac. We determine the anchor positions atp in
posed space that satisfy

0 = atc −Dexp(a
t
p; zexp, zgeo) (13)

using iterative root finding [16], i.e. the backward defor-
mation field is inverted through a numerical procedure. To
coarsely guide zexp during tracking we enforce

Llm = MSE(πK,Et(a
t
p), Lt), (14)

which measures the screen-space distance between detected
landmarks Lt and projected posed anchors, where πK,Et

denotes a perspective projection using camera intrinsics K
and extrinsics Et.

4.5. Regularization

We encourage the latent codes to stay within a well-behaved
parameter range, which is also enforced during training:

Lprior = ∥zgeo∥2+λapp∥zapp∥2+
λexp
T

∑
t

∥zexp∥2. (15)

Additionally, we use the symmetry loss from NPHM [26]
on the local latent codes contained in zgeo and zapp, and en-
force temporal smoothness on time-dependent parameters

Lsmooth = TV(zexp) + λrotTV(Rt) + λtransTV(tt). (16)

4.6. Optimization Strategy

We optimize Eq. (6) using stochastic gradient descent
(SGD) and the Adam optimizer [39]. We initialize all la-
tent codes as zeros, ζ is initialized as uniform lighting from
all directions, and head poses Rt, tt are initialized from a
tracked FLAME model.

We start our optimization by separately optimizing the
first frame, and then optimize for the remaining frames se-
quentially in a frame-by-frame fashion, where zgeo, zapp,
and ζ remain frozen. This strategy provides good estimates
over all parameters and serves as initialization for our main
stage, where we optimize over all parameters jointly. For
each optimization step a random timestep t and random rays
for the rendering losses are sampled. Our smoothness loss
is computed between the neighboring frames t−1 and t+1.

5. Results
To evaluate our goal of dynamic face reconstruction, we
record 20 Kinect sequences in a casual setting, for a lack
of publicly available alternatives. The RGB sensor serves
as input, while the depth sensor allows for a geometric eval-
uation. We record 5 participants (3 female, 2 male) under a
wide range of facial expressions, emotions and include one
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Input RGB Frame DECA [19] MICA Tracker [95] IMavatar [90] Ours

Figure 3. Comparison of the 3D reconstruction quality from monocular RGB videos against our baseline. We show error maps with
color-coded point-to-mesh distance from ground truth Kinect depth to the reconstructed meshes.

talking sequence. All participants signed agreements com-
pliant with GDPR requirements. We record each sequence
for 12 seconds at 15 frames per second, resulting in 180
frames per sequence.

5.1. Metrics

We report unidirectional L1-Chamfer distance in meters
from the back-projected depth map to the reconstructions,
which cover the complete head. Similarly, we report the
unidirectional cosine-similarity of normals. Additionally,
we measure the recall [74], i.e. the percentage of ground
truth points that are covered by at least one point on the
reconstruction w.r.t. to a given threshold distance.

Evaluation Protocol To eliminate any remaining depth
ambiguity, we optimize for a similarity transform from re-
constructed mesh to ground truth point cloud using ICP [6].
To exclude the sensor noise of the regions inside the mouth
and eyes and to account for differences between the com-
pared methods, we remove these regions, as well as the hair
and neck region, using facial segmentation [92]. We visual-
ize the resulting ground truth point clouds in Fig. 3, which
are color-coded according to the Chamfer distance.

5.2. Baselines

MICA tracker [95] Using a 3DMM as a model prior is
the most prominent approach to 3D face tracking. We use
the state-of-the-art facer tracker from MICA [95], which is
based on FLAME [46], as a representative of PCA-based
tracking approaches.

DECA [19] DECA is a feed-forward CNN that predicts
FLAME parameters and offsets, and is trained in a self-
supervised fashion on in-the-wild images, thereby obtaining
robustness to real-world lighting conditions.

IMavatar [90] IMavatar is representative of the per-
scene avatar reconstruction methods. Similar to our
method, IMavatar uses neural fields to explain details be-
yond the capabilities of the underlying FLAME model. It
merely uses a tracked FLAME model as guidance during
optimization.

5.2.1 Implementation Details

Training MonoNPHM We implement our model in Py-
torch [59] and utilize PytorchGeometric [21] to restrict
computations in canonical space to the k nearest anchors.
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Figure 4. Temporal Reconstructions: We show five reconstruc-
tions from same sequence (top two rows). A 50-50 overlay (top
row) between reconstructed normals and the input images demon-
strates accurate alignment in the image space. The bottom two
rows show cross-reenactment by transferring the reconstructed ex-
pression codes to two previously reconstructed subjects.

We follow NPHM [26] and use 64 dimensions for the global
latent codes involved in zapp and zexp. For the local codes
we use 32 dimensions. For the expression codes zexp we
use 100 dimensions. We train our model for 2500 epochs,
use a batch size of 64, and a learning rate of 5e−4 for the
networks and 2e−3 for the latent codes. We train on the
NPHM dataset [26] using 4 NVIDIA RTX2080 GPUs with
12GB of VRAM taking roughly 52 hours until convergence.
More details are provided in our supplementary.

Data Pre-Processing We perform several common pre-
processing steps to remove parts of the observed images that
are not included in our learned prior and detect landmarks.
Namely, we rely on face detection [18], facial landmark
detection [34], semantic segmentation to remove the torso
[92], as well as, video matting [37] to remove the back-
ground. For all baselines, we follow their proposed pre-
processing pipeline.

Tracking For each step of SGD we randomly sample
500 rays. During volume rendering, we randomly sample
32 coarse samples, and additional 32 samples using im-
portance sampling. We start with a large variance for the
NeuS [79] rendering, which is decayed over time to con-
centrate tightly around the surface. We perform 250 opti-

mization steps for the first frame, and 60 steps per frame
otherwise. To build forward correspondences for our land-
mark loss, we use 5 random initializations for iterative root
finding. More details are provided in the supplementary.

Our optimization operates at roughly 1.2 frames per
minute. As a comparison, the MICA tracker can track 2
frames per minute using the default settings, and IMavatar
operates at roughly 0.4 frames per minute.

Method L1-Chamfer ↓ N. C. ↑ Recall@2.5mm ↑

DECA [19] 0.0034 0.917 0.644
MICATracker [95] 0.0030 0.932 0.654
IMavatar [90] 0.0054 0.888 0.625
Ours 0.0024 0.940 0.785

Table 1. Comparison of 3D face reconstruction from monocular
RGB videos. The chamfer distance is reported in meters.

5.3. Tracking Results

We compare MonoNPHMto our baselines by fitting each
model to all the 20 monocular RGB sequences individually.
We report quantitative and qualitative results in Tab. 1 and
Fig. 3, respectively. For results on the complete sequences,
we kindly refer to our supplementary video. Fig. 3 shows
that MonoNPHM reconstructs important details about the
face shape and expressions, that significantly help to rec-
ognize the identity and interpret the reconstructed emo-
tion correctly. Compared to the 3DMM-based approaches,
DECA and the MICA tracker, MonoNPHM is capable of
reconstructing complete heads, including the mouth inside
and hair. IMavatar, on the other hand, suffers from its in-
creased representational capacity compared to FLAME, due
to the difficulty of task. The quantitative evaluation reported
in Tab. 1 confirms these findings.

Additionally, we show qualitative results for five frames
of the same sequence in Fig. 4, to demonstrate temporal
consistency and the alignment of our reconstructed geome-
try against the input sequence in screen space. Alongside,
we show the predicted color images Î of MonoNPHM, to
give further insights into our rendering loss LRGB, which
mainly drives our optimization. Finally, we perform cross-
reenactment by transferring the reconstructed latent codes
zexp to the identity codes zgeo and zapp from another par-
ticipant. Visually, the resulting reenactments capture the
contents of the original expression to a high degree.

5.4. Ablations

We support several of our claims by ablating individual
components on the same 20 Kinect sequences. We report
quantitative results in Tab. 2 and refer to our supplementary
for a qualitative comparison.
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Method L1-Chamfer ↓ N. C. ↑ Recall@2.5mm ↑
w/ sphere tracing 0.0033 0.905 0.674
w/o spher. harm. 0.0028 0.923 0.718
w/o Llm 0.0027 0.939 0.745
w/o color comm. 0.0028 0.933 0.735
w/ global MLP 0.0026 0.940 0.768

Ours 0.0024 0.940 0.785

Table 2. Ablation experiments isolating single components of our
tracking approach (first 3 rows), and of our architecture (second
section). See Sec. 5.4 for details on the individual experiments.

RGB wo/ hyper-dims. w/ hyper-dims.

Figure 5. Effect of Hyper-Dimensions: Without the addition of
hyper-dimensions, the backward deformation model cannot accu-
rately reconstruct geometry and color for topologically challeng-
ing expressions, e.g. opening of mouth and closing of eyes.

Tracking Algorithm Firstly, we show that NeuS-style
volume rendering [79], instead of the sphere-tracing-based
rendering of implicit surfaces [83], is essential for the suc-
cess of our tracking approach. Second, the use of spherical
harmonics is crucial to account for lighting conditions that
vastly differ from our training data. Otherwise, the RGB
loss is dominated by lighting effects that our model cannot
explain. Lastly, we note that without using the landmark
loss Llm our optimization often performs similarly well, but
tends to get stuck in local minima, if large and fast mouth
movements, e.g. during shouting, are encountered.

The effect of hgeo Furthermore, we show the signifi-
cance of removing the communication channel between ge-
ometry and color networks. To this end, we train a model
that uses canonical coordinates xc instead of hgeo(xc) as
input to the local color MLPs defined in Eq. (3). We hy-
pothesize that for such a model, gradients through our most
important loss LRGB are less informative for zgeo and zexp.

Local vs Global MLPs Additionally, we ablate the
effect of using the local MLP ensemble from NPHM [26]
against a simpler architecture, that represents Fgeo and
Fapp using a global MLP. To account for good tracking

of extreme expressions, we find that the landmark loss is
equally important for this global architecture. To this end,
we include the anchor prediction MLP A into this ablation
experiment, such that the usage of Llm becomes viable. Do-
ing so, we are able to associate ac with zgeo, and achieve
good tracking performance, with slightly fewer geometric
details, as reflected in the metrics.

Effect of Hyper-Dimensions. Finally, in Fig. 5 we
highlight the importance of using hyper-dimensions for cor-
rectly representing topologically challenging expressions,
such as the closing of the eyes and opening of the mouth.

6. Limitations

In our experiments, we show that MonoNPHM can recon-
struct high-quality human heads from monocular videos;
however, at the same time, we believe that there are still
several limitations and opportunities for future work. For
instance, while spherical harmonics can be used to ac-
count for simple lighting conditions without increasing the
model complexity, we believe that reconstructions could
be improved by addressing lighting and shadows more
thoroughly. Possible options are the inclusion of a more
advanced shading model during volume rendering [67],
image-space delighting [84], as well as, CNN-based image
encoders [13, 19]. Another limitation is our tracking speed.
While this is partially explained by our unoptimized imple-
mentation that runs a full optimization for each frame, we
believe that several advances can be made, e.g. using CNN-
based initialization [60], coarse-to-fine optimization, faster
neural-field backbones [15, 53] and second-order optimiza-
tion for tracking [76].

7. Conclusion

In this work we have introduced MonoNPHM, a neural-
field-based parametric face model, that represents faces
using an SDF and texture field in canonical space, and
represents movements using backward deformations, aug-
mented with hyper-dimensions. We enforce a tight com-
munication between appearance and geometry to facili-
tate efficient inverse rendering. By including explicit con-
trol points in our implicit geometry representation, we
have developed a highly accurate 3D face tracking algo-
rithm based on volumetric rendering for implicit surfaces.
MonoNPHM achieves significantly more accurate 3D re-
construction on challenging monocular RGB videos, com-
pared to all our baselines. We believe that our work makes
the use of neural parametric head models much more acces-
sible for many downstream tasks. We hope that our work
inspires more research to explore the use of neural-field-
based parametric models and develop the necessary toolsets
that are already available for classical 3DMMs.
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Appendix
A. Overview

This supplementary document provides additional imple-
mentation details on our network architecture (Appen-
dices B.1 and B.2), training (Appendix B.3) and tracking
strategy (Appendix B.4).

Additionally, we present more qualitative results (Ap-
pendix C) and discuss our ablation experiments (Ap-
pendix C.2).

We kindly suggest the reviewers watch our supplemen-
tary video, for a temporally complete visualization of the
tracked sequences.

B. Implementation Details

In Appendix B.1 we provide details about the individual
network components of MonoNPHM. Appendix B.2 de-
scribes how we implement a memory efficient variant of the
MLP ensemble proposed in [26].

B.1. Network Architectures

Some of mentioned details in this subsection require de-
tailed knowledge about NPHM [26].

Expression Network To represent our backward defor-
mation field Fexp we use a 6-layer MLP with a width of
400. The expression codes zexp are 100 dimensional. The
dependence on zgeo is bottlenecked by a linear projection
to 16 dimensions, as proposed in [26].

Geometry Network Our local geometry MLPs fk
geo have

4 layers and a width of 200. Out of the 65 anchors, 30 are
symmetric, meaning that the ensemble consists of 64−30 =
34 MLPs. Note, however, that the spatial input of fk

geo is
augmented with the predicted hyper-dimensions.

Appearance Network Our appearance MLPs fk
app follow

the same structure as fk
geo, but receive extracted geome-

try features hgeo(xc) as input. hgeo is a two-layer MLP
(widths 100 and 16), that maps the hidden features of the
last layers of fk

geo to 16 dimensions.

Anchor Prediction Compared to the anchor layout used
in NPHM [26], we increase the number of anchors from
39 to 65, and rearrange them, such that the anchors coin-
cide with the most important facial landmarks for tracking.
Fig. 6 shows our anchor layout. The anchor prediction MLP
A consists of 3 linear layers and has a hidden dimension of
64.

B.2. Efficient Implementation

To account for the computational burden of the increased
number of anchors and added appearance MLPs, we prune
the computations of the local MLP ensemble.

kNN Pruning NPHM executes every MLP fk
geo for each

query point xc. Instead, we use Pytorch3D [68] to compute
the 8 nearest neighbors Nxc for each query. Then, we con-
ceptualize the execution of local MLPs as a graph convolu-
tion, implemented using PytorchGeometric [21]. The graph
convolution is restricted to Nxc

(see Eq. (2)). In practice,
this decreases the number of MLP executions for each query
from 65 to 8 (the number of nearest neighbors). Hence,
GPU memory demand is roughly reduced 8-fold
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Figure 6. Re-Scaling wk: We show weights wk for three differ-
ent anchors (red) among all the 65 anchors (orange). The mesh
surface is colored according to wk where white corresponds to a
low value and blue to a large value. The bottom row shows our
re-scaled weights compared to a constant scale (top row). Note
the discontinuities on the top left, and the sharp decay on the top
right.

Re-Scaling wk For a given query point xc and local MLP
associated to the anchor point ak, NPHM uses weights

w∗
k(xc,ak) = exp

(−∥xc − ak∥2
2σ

)
, (17)

and normalizes them to wk in order to blend the pre-
dictions of the individual MLPs. However, when restrict-
ing the computations to the set of nearest neighbors, such a
constant-scale Gaussian weighting results in discontinuous
for points on the boundary of Voronoi cells, i.e. when the
set of nearest neighbors changes.
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Figure 7. Deformation Consistency: We illustrate the behavior of our deformation network Fexp, by visualizing the predicted canonical
coordinates xc (top row) and hyper dimensions ω (bottom row) for 6 diverse frames of one tracked sequence. We use the x and y
components of xc to index a checkerboard image, demonstrating that the semantics of the face’s surface are consistently deformed. To
visualize ω ∈ R2 we map it to the red and green channels, where 0 corresponds to gray.

As demonstrated in the top left of Fig. 6, the influence of
the highlighted anchor point exhibits a sharp boundary. This
effect can be mitigated by reducing σ to be significantly
smaller than the size of the Voronoi cells. However, due to
the non-uniform spatial arrangement of anchors, finding a
single σ that ensures smooth boundaries for all anchors is
impossible.

Consequently, we vary

σ(xc) =
1

4
max
x∈Nxc

∥xc − x∥2 (18)

according to the set of nearest neighbors of Nxc . Doing
so ensures that w∗

k(xc,ak) decays quickly enough to zero
when approaching the boundaries of its Voronoi cell.

B.3. Training Details

B.3.1 Data Preparation

We use the 3D textured scans of the NPHM dataset [26] for
training. To this and we sample points on the surface Ssurf
and near the surface Snear, and define Sall = Ssurf ∪ Snear.
For xp ∈ Sall we precompute its normal n(xp) and color
RGB(xp). Additionally, we precompute samples (xp, xc) ∈
Scorr of corresponding points in posed and canonical space
following [54] and using the provided registered meshes in
the NPHM dataset.

B.3.2 Loss Functions

We train MonoNPHM in an end-to-end fashion, similar to
ImFace [88] which jointly trains geometry and expression
networks.

Geometry Supervision The employed losses are similar
to [29], however, adopted to dynamic objects similarly to
[88]. Hence, the main losses for the geometry and ex-
pression supervision put constraints on the zero-level set
through

Llevel-set =
∑

xp∈Ssurf

∥Fgeo(Fexp(xp))∥1 (19)

and on the surface normals through

Ln =
∑

xp∈Ssurf

∥∇xp
Fgeo(Fexp(xp))− n(xp)∥2, (20)

where we omit the dependence on latent codes for brevity.
Additionally, we enforce the eikonal constraint

Leik =
∑

xp∈Sall

∥∇xp
Fgeo(Fexp(xp))− 1∥2. (21)

To guide Fexp during the first half of training we include a
correspondence loss

Lcorr =
∑

(xp,xc)∈Scorr

∥Fexp(xp)− xc∥1. (22)
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On one side this provides direct expression supervision. On
the other side Lcorr also enforces the first 3 dimensions of
the canonical space to behave as Euclidean as possible. This
is not only desirable but also extremely important for the
landmark loss Llm to work. For the same reason, we reg-
ularize predicted hyper-dimensions ω = [Fexp(xp)]ω to be
small using

Lhyper =
∑

xp∈Sall

∥ [Fexpω(xp)]ω ∥2. (23)

In a similar fashion, we regularize predicted deformations
to be small

Ldef =
∑

xp∈Ssurf

∥Fexp(xp)− xp∥2. (24)

Finally, we include the same regularization terms as [26],
i.e. we constrain the norm of zgeo and zexp and apply a
symmetry loss on the symmetric parts of zgeo.

Anchor Supervision Anchor positions are directly super-
vised using

LA = ∥agt −A(zgeo)∥F (25)

where the ground truth anchor positions agt are extracted
from the registered meshes in FLAME [46] topology, as
provided by the NPHM dataset. Therefore, the anchors are
supervised to follow the Euclidean coordinate system of the
FLAME model. While this seems obvious, we note that
without the necessary precautions imposed by Lcorr, Ldef,
and Lhyper, our canonical space becomes non-euclidean,
similarly to [45, 49, 93].

Appearance Supervision The appearance codes zapp
and network Fapp are jointly optimized alongside the ge-
ometry, by including

Lapp =
∑

xp∈Sall

∥Fapp(hgeo(Fexp(xp))−RGB(xp)∥1 (26)

into our training. Similarly as before, we also regularize
the norm of zapp. We do not include a perceptual loss dur-
ing training, as done in [47, 86], since we are focused on
geometry reconstruction via inverse rendering, instead of
photorealistic appearance.

B.3.3 Training Strategy

Using the above-mentioned losses, we train all networks
and latent codes jointly in an auto-decoder fashion [56].
We use the Adam optimizer [39], and periodically divide
the learning rates by half every 500 epochs, for a total of
2500 epochs and use a batch size of 64. We start with
lrnetworks = 0.0005, lrlat-can = 0.002 and lrlat-exp = 0.01,
for the network parameters, latent codes for canonical space
and latent expression codes, respectively.

B.4. Tracking Details

We perform iterative root finding using 5 random samples
normally distributed around the canonical anchor ak of in-
terest, as we experience similar convergence issues to [16]
that are dependent on the initial position.

Since the inside of the mouth is subject to extreme shad-
ows, far beyond what our simple lighting assumptions can
explain, we use the predicted facial segmentation masks
[91] to down-weigh the color loss LRGB by a factor of 25
for that region.

Furthermore, we employ several mechanisms to encour-
age a coarse-to-fine optimization. First, we decay all learn-
ing rates of the employed Adam optimizer periodically
throughout the optimization. The learning rate for the head
pose and spherical harmonics parameters ζ start larger and
decay faster compared to the learning rate of the latent
codes. Second, we increase the inverse standard deviation
from the NeuS [79] volume rendering formulation from 0.3
to 0.8. Therefore, the rendering densities are initially dis-
tributed widely around the surface, allowing for a large vol-
ume that receives gradients in the coarser stages of opti-
mization. Third, the influence of the landmark loss Llm is
strongly decayed throughout the optimization progress. Ini-
tial epochs strongly rely on landmark guidance, while later
ones are barely affected by it anymore. Additionally, we
weigh the landmarks of the eyes, mouth and chin 100 more
then the remaining ones.

C. Additional Qualitative Results

C.1. Additional Comparisons

Next to the results in the main paper and our supplementary
video, we show additional qualitative comparisons against
our baselines in Fig. 8. Note that each row shows a frame
from a different sequence, which are reconstructed sepa-
rately.

C.2. Ablations

While our main document only reported quantitative results
of our ablation experiments, due to space reasons, Fig. 9
and our supplementary video show qualitative results. In the
following we highlight some key insights from our ablation
experiments:

Effect of Llm Generally, our tracking performs well even
when the landmark loss is disabled. However, some ex-
treme expressions are completely missed without it, see the
second column in Fig. 9.
Additionally, utilizing a landmark detector trained on large
image collections of in-the-wild images provides some ro-
bustness against lighting and shadow effects.
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Volume Rendering vs. Sphere Tracing Utilizing sphere
tracing [83], instead of a volumetric formulation [79], for
differentiable SDF-based rendering results in reconstruc-
tions that are perceptively dissimilar to the subject. Ad-
ditionally, we note that the sphere tracing sometimes gets
stuck in local minima, where it is not able to remove hair
geometry in front of the forehead, see columns four and
five.

Spherical Harmonics Since our model is trained on 3D
scans, with albedo-like texture, accounting for lighting ef-
fects is important. Removing the spherical harmonics term,
makes the task slightly ill-posed and generally results in
worse reconstruction quality.

Color Communication Conditioning the color MLP
Fapp directly on canonical spatial coordinates xc instead
of geometry features hgeo(xc), gives the model extra free-
dom since both outputs are less correlated. For example in
column 3 this results in a failure to separate the hair and
cheek. Additionally, such a communication bottleneck was
found to be beneficial for disentangling the geometry and
appearance latent spaces [86].

Local vs. Global MLPs Our MLPs modeling the SDF
and texture field follow the local structure proposed in [26],
i.e. we use an ensemble of local MLPs, each centered
around its specific facial anchor points. Additionally, sym-
metric face regions are represented using the same MLP, but
with mirrored coordinates. Our main motivation for choos-
ing such an architecture are the facial anchors, which we
exploit to formulate our landmark loss. We realized that
it is also possible to use the same landmark loss while us-
ing global MLPs for both SDF and texture field. To this
end, it is necessary to add the anchor prediction network A
to the architecture, although the predicted anchors are not
used anywhere else in that architecture. We find that train-
ing such a model is still capable of successfully associat-
ing the geometry code zgeo with plausible facial anchors.
Nevertheless, the local MLP ensemble still learns a more
detailed latent representation, which, for example, shows in
the slightly blurry eye reconstructions in columns three and
five.
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Figure 8. Tracking Comparison: We show additional qualitative results of the monocular 3D reconstruction task. The error maps show
the color-coded point-to-mesh distance from the back-projected Kinect depth to the reconstruction.
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Figure 9. Ablation Results: Qualitative comparison of our ablation experiments, as quantitatively reported in 2. Rows and columns are
transposed compared to our other result figures. The error maps show the color-coded point-to-mesh distance from the back-projected
Kinect depth to the reconstruction. See Appendix C.2 for a description of our findings.
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